Table 3 Comparison of Various ITS Communication Media | Medium | Bandwidth | Suited for | Special needs | Cost | Reliability | |---|--|--|---|--|---| | Fiber optics | >1 Gbps | High-bandwidth backbones,
video transmission,
interjurisdictional interfaces;
connecting field equipment to
hubs (as for copper below) | Maintenance staff requires special training. Max distance depends on design but can be 30 miles. | Initial outlay similar to copper;
requires less maintenance, but
equipment and training is more
costly | Excellent; fiber connections can be designed to be fault-tolerant | | Twisted-pair
copper | Approx. 50 Kbps
with modems; 2
Mbps with DSL | Connecting field equipment (low-bandwidth data, controllers, message signs, etc.) to communication hubs. Video up to one mile. | None. Max distance typically on the order of one mile without repeaters to boost signal strength. | Cost driven by the need for conduit; new conduit runs are about \$30 per foot | Very good; failures are
generally attributable to
construction
inadvertently cutting a
link | | Microwave | Up to approx. 50 Mbps | Connecting field equipment (data circuits) to hubs; video transmission; interjurisdictional interfaces | Requires line-of-sight between antennas; high-bandwidth equipment requires environmental enclosures; generally requires FCC licensing. Max distance varies from 1 to 20 miles; depends on frequency and antenna gain. | Lower bandwidth connections
(controller to controller daisy
chains) are approximately
\$10,000 per link | Very good; disruptions
generally due to heavy
fog and rain, which
worsens if antenna
separation is near design
limit; or antenna
misalignment | | Spread-spectrum radio | Up to approx. 20
Kbps | Connecting field equipment (data circuits) to hubs | Requires line-of-sight between antennas. Max distance is subject to antenna configuration but can be assumed similar to microwave. | Approximately \$10,000 per link | Very good; disruptions
generally due to weather,
heavy interference from
other spectrum users, or
antenna misalignment | | Leased land lines
(dial-up modem,
T1, etc.) | Essentially
unlimited; price
paid is
proportional to
bandwidth | Connection of isolated field equipment; interjurisdictional interfaces | None | Low initial cost, but per-month cost charged by vendor; dialups are \$10/mo; leased lines start at \$300/mo. for 56 Kbps | Very good | | Subscriber wireless (CDPD, etc.) | 19.2 Kbps | Connection of isolated field equipment | None | Low initial cost, but per-month cost charged by vendor; charge is per unit and per kilobyte transmitted; \$50/unit/mo. is good budget amount | Good to very good; not
all technologies proven
for ITS market |